Adaptive Post-silicon Server Validation using Machine Learning
نویسندگان
چکیده
This paper mainly focuses on providing solutions for efficient feature validation. Modern day server processors and computer systems are developed with billions of transistors. Validation of such a complex systems is playing a crucial role in current research. Pre-silicon validation is not enough to get a full system functional coverage. Post-silicon validation is a necessary step to validate these complex systems and to determine the escaped functional silicon bugs during presilicon validation. During post-silicon validation in order to get a full system functional coverage there are more number of features for testing. Applying all the features manually and going through the each test results is difficult to maintain. In order to reduce resource requirements for determining test failure signature, and to reduce the time to debug the failure, introduced the machine learning in current validation environment. The proposed validation algorithm in this paper, which is very useful in feature validation of server processer’s and is adaptive to the previous validation learning’s. Validation is mainly carried out for power management features provided by Advanced Configuration and Power Interface specification. The functional coverage implemented for important power management features namely processor power states, processor performance states and thermal states. This feature coverage analysis is provided through graphical plots. General Terms Algorithm, Functional coverage, Machine learning, Processor Power and Thermal management, Validation
منابع مشابه
Feature-based Signal Selection for Post-silicon Debug using Machine Learning
A key challenge of post-silicon validation methodology is to select a limited number of trace signals that are effective during post-silicon debug. Structural analysis used by traditional signal selection techniques are fast but lead to poor restoration quality. In contrast, simulation-based selection techniques provide superior restorability but incur significant computation overhead. While ea...
متن کاملFeature-based Signal Selection for Post-silicon Debug using Machine Learning
A key challenge of post-silicon validation methodology is to select a limited number of trace signals that are effective during post-silicon debug. Structural analysis used by traditional signal selection techniques are fast but lead to poor restoration quality. In contrast, simulation-based selection techniques provide superior restorability but incur significant computation overhead. While ea...
متن کاملVacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery
Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (seco...
متن کاملProstate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches
Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response. Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...
متن کاملModeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine
In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015